Abstract

BackgroundGamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo.MethodsEstablished C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR.ResultsGLA caused a significant decrease in tumour size (75 ± 8.8%) and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 ± 16%) and the VEGF receptor Flt1 (57 ± 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 ± 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11%) of BrdU incorporation into the tumour in vivo.ConclusionOverall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.

Highlights

  • Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions

  • The mRNA and protein expression of vascular endothelial growth factor (VEGF) and its receptors Flt1 and Flk1 were compared in control cerebrospinal fluid (CSF) and 5 mM gamma-linolenic acid (GLA) treated animals

  • The mRNA expression of Flt1 was reduced by 77 ± 16% in the presence of 5 mM GLA while the protein expression was reduced by 57 ± 5.8% (Figure 1F, 1G)

Read more

Summary

Introduction

Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. GLA is known to induce reactive oxygen species generation and cause lipid peroxidation in tumour cells and leads to altered mitochondrial metabolism and ultrastructure, cytochrome c release, caspase activation and apoptosis [10,11,12,13,14]. Both GLA and its metabolic products can alter the gene expression of several proteins and GLA is known to inhibit glioma cell migration [14,15,16]. The effects of GLA on cell cycle and angiogenesis related proteins in gliomas in vivo has not been explored and is the principal focus of the present study

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call