Abstract

Gamma-irradiation of mongrel mice at a sublethal dose (700 Roentgen) enhanced the formation of nitric oxide (NO) in the liver, intestine, lung, kidney, brain, spleen or heart of the animals. NO formation was determined by the increase in intensity of the EPR signal due to trapping of NO into mononitrosyl iron complexes (MNIC) with exogenous diethyldithiocarbamate (DETC) injected intraperitoneally. The EPR signal of these MNIC-DETC complexes was characterized by g-factor values at g perpendicular values at g perpendicular = 2.035 and g parallel = 2.02 and a triplet hyperfine structure at g perpendicular. The NO synthase inhibitor, NG-nitro-L-arginine, prevented MNIC-DETC complex formation both in liver and intestine, demonstrating the involvement of endogenous NO formed. Thus, gamma-irradiation may enhance endogenous NO biosynthesis in these tissues, presumably by facilitating the entry of Ca2+ ions into the membrane as well as the cytosol of NO-producing cells through irradiation-induced membrane lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.