Abstract

Gamma-ray radiation was used as a clean and easy method for turning the physicochemical properties of graphene oxide (GO) in this study. Silane functionalized-GO were synthesized by chemically grafting 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTES) onto GO surface using gamma-ray irradiation. This established non-contact process is used to create a reductive medium which is deemed simpler, purer and less harmful compared conventional chemical reduction. The resulting functionalized-GO were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), and Raman spectroscopy. The chemical interaction of silane with the GO surface was confirmed by FT-IR. X-ray diffraction reveals the change in the crystalline phases was due to surface functionalization. Surface defects of the GO due to the introduction of silane mioties was revealed by Raman spectroscopy. Thermogravimetric analysis of the functionalized-GO exhibits a multiple peaks in the temperature range of 200–650 °C which corresponds to the degradation of chemically grafted silane on the GO surface.

Highlights

  • Graphene enjoys so much attention since its discovery by Andre Geim and Konstantin Novoselov in 2004 due to its unique electrical, optical, thermal, and mechanical properties which are desirable for a broad range of high tech applications in supercapacitors, batteries, flexible transparent electronic devices, composites, flexible transparent displays, and sensors [1]

  • We reported a salinization of graphene oxide (GO) by gamma ray irradiation

  • Characteristic band appears at 1072 and 952 cm−1 which is assigned to Si-O-C and Si-O-Si indicating the successful chemical functionalization since the characteristics peaks of GO which include C=O

Read more

Summary

Introduction

Graphene enjoys so much attention since its discovery by Andre Geim and Konstantin Novoselov in 2004 due to its unique electrical, optical, thermal, and mechanical properties which are desirable for a broad range of high tech applications in supercapacitors, batteries, flexible transparent electronic devices, composites, flexible transparent displays, and sensors [1]. Graphene related materials that consist of chemical derivatives or structure of graphene are commonly called ‘graphene’. These include double and few layered graphene and chemically reduced graphene oxide (rGO) [2]. Potential applications of graphene is on the rise over the last decade and are nowadays covering most research field in materials science. The range of graphene chemistries, grade, and morphologies that can be processed is numerous due to the diversity of growth and surface modification mechanism which has been used on sp carbon based materials [3]. Epitaxial growth, chemical vapor deposition (CVD) and mechanical cleavage of graphite leads to the formation of very high grade material with low sp carbon content [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.