Abstract

Recurrent and lateral inhibition play a prominent role in patterning the odor-evoked discharges in mitral cells, the output neurons of the olfactory bulb. Inhibitory responses in this brain region are mediated through reciprocal synaptic connections made between the dendrites of mitral cells and GABAergic interneurons. Previous studies have demonstrated that N-methyl-D-aspartate (NMDA) receptors on interneurons play a critical role in eliciting GABA release at reciprocal dendrodendritic synapses. In acute olfactory bulb slices, these receptors are tonically blocked by extracellular Mg2+, and recurrent inhibition is disabled. In the present study, we examined the mechanisms by which this tonic blockade could be reversed. We demonstrate that near-coincident activation of an excitatory pathway to the proximal dendrites of GABAergic interneurons relieves the Mg2+ blockade of NMDA receptors at reciprocal dendrodendritic synapses and greatly facilitates recurrent inhibition onto mitral cells. Gating of recurrent and lateral inhibition in the presence of extracellular Mg2+ requires gamma-frequency stimulation of glutamatergic axons in the granule cell layer. Long-range excitatory axon connections from mitral cells innervated by different subpopulations of olfactory receptor neurons may provide a gating input to granule cells, thereby facilitating the mitral cell lateral inhibition that contributes to odorant encoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.