Abstract
The properties of a transport system specific for gamma-aminobutyric acid (GABA) expressed in human U373 MG astrocytoma cells were examined. The uptake of [(3)H]GABA was dependent on both extracellular Na(+) and Cl(-) ions and was inhibited by (+/-)-nipecotic acid, guvacine, and beta-alanine, with a pharmacological profile corresponding to that reported for the human homologue of the GABA/betaine transporter (BGT-1). Accordingly, [(3)H]GABA uptake was also inhibited by betaine, and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of total RNA from U373 MG cells with specific BGT-1 primers resulted in the amplification of a 440 bp fragment that was further characterized by restriction analysis and sequencing. In addition, Western blot analysis with anti-BGT-1 antiserum revealed the presence of a characteristic 60 kDa band. The primary structure of the human BGT-1 protein predicts two putative phosphorylation sites for the Ca(2+)/diacylglicerol-dependent protein kinase (PKC), and treatment of U373 MG cells with the PKC activator phorbol 12-myristate-13-acetate (TPA) led to a concentration- and time-dependent decrease in [(3)H]GABA uptake. The maximal effect was detected at 2 hr of incubation, to disappear after 4 hr. TPA-induced reduction in [(3)H]GABA uptake was reversed by preincubation with staurosporine. Taken together, these results indicate that U373 MG cells express a GABA transporter of the BGT-1 subtype whose function is regulated by phosphorylation events through PKC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.