Abstract

gamma-Tubulin, a component of spindle pole bodies in fungal cells and pericentriolar material in vertebrate cells, is thought to play a role in the nucleation of microtubule growth and to define their polarity. In contrast to the adult somatic cells, microtubules are nucleated in the absence of centrioles in mammalian oocytes and early embryos. By studying acentriolar mouse oocytes and their early development following fertilization, we show that gamma-tubulin antibody crossreacts with a 50,000 M(r) protein in unfertilized mouse oocytes and demonstrate that gamma-tubulin distribution is rearranged dramatically during fertilization. In unfertilized mouse oocytes, gamma-tubulin is concentrated in the broad spindle poles of meiotic spindle (MII) and as the distinct foci which form the centers of the cytoplasmic microtubule asters (cytasters). The integrity of these gamma-tubulin foci and their cytoplasmic location is maintained during the drug- or cold-induced depolymerization of microtubules. gamma-Tubulin is also found in the basal body of the mouse sperm. During fertilization, the gamma-tubulin is found at the cytastral centers as well as in the incorporated sperm basal body complex, and the gamma-tubulin foci coalesce at the perinuclear microtubule organizing regions of the two pronuclei at the first mitotic prophase. During mitosis, gamma-tubulin is found associated with broad bands that form the poles of the first mitotic spindle. By the late preimplantation stage, when newly generated centrioles have been reported to arise, gamma-tubulin remains localized at the centrosome of mitotic cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call