Abstract

Today conventional titanium-based alloys represent one third of the weight of modern aircraft engines and, are the second most used engine material following Ni-based superalloys. [1] Titanium aluminide alloys based on intermetallic phases γ (TiAl) and α2 (Ti3Al) and the most recent – orthorhombic titanium aluminide, are widely recognized as having the potential to meet the design requirements for high temperature applications. The outstanding thermo-physical and mechanical properties of these materials rely mainly on the strongly ordered nature and the directional bonding of the compounds. These involve: high melting point, above 1460°C, low density of 3,9-5 g/cm3, according the alloying degree, high elastic modulus (high stiffness), high yield strength and good creep resistance at high temperature, low diffusion coefficient, good structural stability at high temperature. The main objective of our paper are focussed on the short-term mechanical properties if Titanium niobium aluminide at 850°C. High temperatures mechanical properties evaluation was performed by tensile testing at temperature of 850°C on universal static and dynamic testing machine Instron 8802, equipped with high temperature system, for maximum 1000°C, and extensometer with a measuring basis of 40 mm. The mechanical tensile test was performed according the ASTM E8, with control of deformation and a testing rate of 10-4 mmsec.-1. Short-term behavior request of the support uncovered alloys, at 850°C has proved to be modest and it seems obvious that the alloys based on titanium aluminides cannot be used without protective coatings. Key words: titanium aluminides, high temperatures, mechanical properties

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.