Abstract

The development of novel semiconductors-based-photocatalysts is a promising strategy for addressing environmental pollution. In the present study, gamma irradiation was utilized to induce the synthesis of the exceptionally efficient Ag-decorated ZnCo2O4–MoS2 heterostructure. XRD and EDX analyses were verified the successful synthesis of Ag-decorated ZnCo2O4–MoS2 heterostructure. Also, SEM and HR-TEM images were illustrated the heterostructure nature of the synthesized photocatalyst in the nanoscale regime. The obtained optical bandgap values verified that photocatalyst possesses a narrow semiconductor bandgap. Further, the Ag-decorated ZnCo2O4–MoS2 heterostructure exhibited superior photodegradation potential towards MB (95.4% removal of the MB). The antimicrobial potency of the synthesized samples had been investigated through ZOI, MIC, growth curve assay, and the effect of UV illumination. Also, the antibiofilm behaviour has been studied. The antibacterial reaction mechanism had been estimated by membrane leakage assay and SEM imaging. The tested samples displayed a positive potency to a broad spectrum of bacteria like Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In particular, Ag–MoS2–ZnCo2O4 nanocomposite possessed the highest impact, followed by the spinal ZnCo2O4 NPs towards all the tested pathogenic microbes. In this assessment, the Ag-decorated ZnCo2O4–MoS2 heterostructure has been shown to be a promising candidate for wastewater treatment application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call