Abstract

Recently, the Fermi-LAT Collaboration reported upper limits on the GeV gamma-ray flux from nearby clusters of galaxies. Motivated by these limits, we study corresponding constraints on gamma-ray emissions from two specific decaying dark matter models, one via grand unification scale suppressed operators and the other via R-parity violating operators. Both can account for the PAMELA and Fermi-LAT excesses of e±. For GUT decaying dark matter, the gamma-rays from the M49 and Fornax clusters, with energy in the range of 1 to 10 GeV, lead to the most stringent constraints to date. As a result, this dark matter is disfavored with conventional model of e± background. In addition, it is likely that some tension exists between the Fermi-LAT e± excess and the gamma-ray constraints for any decaying dark matter model, provided conventional model of e± background is adopted. Nevertheless, the GUT decaying dark matter can still solely account for the PAMELA positron fraction excess without violating the gamma-ray constraints. For the gravitino dark matter model with R-parity violation, cluster observations do not give tight constraints. This is because a different e± background has been adopted which leads to relatively light dark matter mass around 200 GeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.