Abstract
The supernova paradigm for the origin of galactic cosmic rays can be tested using multifrequency observations of both non-thermal and thermal emission from supernova remnants. The smoking gun of hadronic acceleration in these sources can, however, only be provided by the detection of a high energy neutrino signal. Here we apply the theory of non-linear particle acceleration at supernova shocks to the case of the supernova remnant RX J1713.7–3946, which is becoming the stereotypical example of a possible hadronic accelerator after the detection of high energy gamma rays by the HESS telescope. Our aim is twofold: on one hand we want to address the uncertainties in the discrimination between a hadronic and a leptonic interpretation of the gamma ray emission, mainly related to the possibility of a statistical uncertainty in the energy determination of the gamma ray photons in the TeV region. On the other we want to stress how a km 3 neutrino telescope would break the degeneracy and provide evidence for efficient cosmic ray acceleration in RX J1713.7–3946. A 3 σ evidence would require about two years of observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.