Abstract

The collective backscattering of intense laser radiation by energetic electron beams is considered. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultrashort pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than one attosecond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.