Abstract

Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic-ray ions in the ICM is still lacking, they produce gamma-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope (GLAST) and imaging atmospheric Cerenkov telescopes (IACTs) for constraining the cosmic-ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (<~10%) constraints for distant (z <~ 0.25) clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic-ray spectrum potentially provided by IACTs. Future gamma-ray observations of clusters can constrain the evolution of cosmic-ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev-Zel'dovich effect cluster surveys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call