Abstract

In this work the effect of radical species generated by gamma ray irradiation of aqueous solution upon structure of vasoactive peptide bradykinin (BK, RPPGFSPFR) was investigated. Increasing doses of 1–15 kGy Co60 gamma radiation were applied to BK solutions and a progressive degradation of its structure in a non-linear mode was observed. Two main peptide derivatives generated by these treatments were isolated and characterized through a combined amino acid analysis and daughter ion scanning mass spectrometry approach. Notably, it was observed that only the Phe residue located at position 8 and not 5 of BK was oxidized by reactive hydroxyl radical species given rise to Tyr8-BK and m-Tyr8-BK analogues. Comparative circular dichroism (CD) experiments of these peptides revealed that BK presents greater conformational similarity to Tyr8-BK than to m-Tyr8-BK. These results are in agreement with the biological potencies of these compounds measured in rat uterus and guinea pig ileum muscle contractile experiments. In summary, gamma irradiation of BK solutions revealed a residue- and surprisingly, position-structural modification effect of reactive radicals even in small peptides. Also of value for peptide chemistry field, the approach of applying controlled strong electromagnetic radiation in solution seems to be an alternative and unique strategy for generating, in some cases, peptides derivatives with uncommon structures and valuable for their further therapeutic potential evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call