Abstract

In this work, we aim to study zinc oxide (ZnO)-based functional materials over cotton fabrics and their effects after gamma ray exposure of 9 kGy. We found that the binding of the nanoparticles with cotton fabrics can be enhanced after irradiation. This could be due to the oxygen deficiency or defects created in the interface between ZnO and cotton fabrics after irradiation. Near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy (XPS) were used to detect the oxygen inadequacies generated in the interior and at the surface of the ZnO nanoparticles after gamma ray exposure. XPS results showed that the binding energy of Zn shifts by 2 eV at 1.5 kGy and by 4 eV at 9 kGy. This huge shift of about 4 eV is completely different from other works due to the reaction that takes place on the interface between ZnO nanostructures and cotton fabrics after gamma ray irradiation. Overall, this work suggests that after gamma ray irradiation, there is an enhanced level of binding between the coated functional nanoparticles and cotton fabrics, which can be advantageous for the textile industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.