Abstract

Supercriticality of the same kind as that in a nuclear pile can take place in high-energy astrophysical objects producing a number of impressive effects. For example, it could cause an explosive release of the energy of a cloud of ultrarelativistic protons into radiation. More certainly, supercriticality should be responsible for energy dissipation of very energetic relativistic fluids such as ultrarelativistic shocks in gamma-ray bursts and jets in active galactic nuclei (AGNs). In this case, the photon breeding process operates. It is a kind of converter mechanism with the high-energy photons and e+e- pairs converting into each other via pair production and inverse Compton scattering. Under certain conditions, which should be satisfied in powerful AGNs, the photon breeding mechanism becomes supercritical: the high-energy photons breed exponentially until their feedback on the fluid changes its velocity pattern. Then the system comes to a self-adjusting near-critical steady state. Monte-Carlo simulations with detailed treatment of particle propagation and interactions demonstrate that a jet with a Lorentz factor Γ ≈ 20 can radiate away up to a half of its total energy, and for Γ = 40 the radiation efficiency can be up to 80 per cent. Outer layers of the jet decelerate down to a moderate Lorentz factor 2–4, while the spine of the jet has a final Lorentz factor in the range 10–20 independent of the initial Γ. Such sharp deceleration under the impact of radiation must cause a number of interesting phenomena such as formation of internal shocks and an early generation of turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call