Abstract

BL Lac objects are active galactic nuclei notable for a beamed nonthermal radiation, which is generated in one of the relativistic jets forming a small angle to the observer’s line-of-sight. The broadband spectra of BL Lacs show a two-component spectral energy distribution (SED). High-energy-peaked BL Lacs (HBLs) exhibit their lower-energy (synchrotron) peaks at UV to X-ray frequencies. The origin of the higher-energy SED component, representing the γ-ray range in HBLs, is still controversial and different emission scenarios (one- and multi-zone synchrotron self-Compton, hadronic etc.) are proposed. In γ-rays, HBLs show a complex flaring behavior with rapid and large-amplitude TeV-band variations on timescales down to a few minutes. This review presents a detailed characterization of the hypothetical emission mechanisms which could contribute to the γ-ray emission, their application to the nearby TeV-detected HBLs, successes in the broadband SED modeling and difficulties in the interpretation of the observational data. I also overview the unstable processes to be responsible for the observed γ-ray variability and particle energization up to millions of Lorentz factors (relativistic shocks, magnetic reconnection, turbulence and jet-star interaction). Finally, the future prospects for solving the persisting problems by means of the dedicated gamma-ray observations and sophisticated simulations are also addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.