Abstract
To evaluate the nuclear properties of the International Thermonuclear Experimental Reactor (ITER) JA Water-Cooled Ceramic Breeder Test Blanket Module (WCCB-TBM) and to ensure its design conforms to nuclear licensing regulations, nuclear analyses have been performed for the WCCB-TBM's components, including its frame, shield, flange, port extension, pipe forest, bio-shield and Ancillary Equipment Unit (AEU). Utilising Monte Carlo code MCNP5.14, activation code ACT-4 and the Fusion Evaluated Nuclear Data Library FENDL-2.1, this paper focusses on the shutdown dose rate calculation for the WCCB-TBM. Monte Carlo N-Particle Transport Code (MCNP) geometry input data for the TBM are created from computer-aided design (CAD) data using the CAD/MCNP automatic conversion code GEOMIT, and other geometry input data are created manually. The ‘Direct 1-Step Monte Carlo’ method is adopted for the decay gamma-ray dose rate calculation. Behind the bio-shield, the effective dose rates 1 day after shutdown are about 0.2μSvh−1, which are much lower than 10μSvh−1, the upper limit for human access. Behind the flange, the effective dose rates 106s after shutdown are 50–80μSvh−1, which are lower than 100μSvh−1, the upper limit for human hands-on access for workers performing maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.