Abstract

The existence of a shallow decay phase in the early X-ray afterglows of gamma-ray bursts is a common feature. Here we investigate the possibility that this is connected to the formation of a highly magnetized millisecond pulsar, pumping energy into the fireball on timescales longer than the prompt emission. In this scenario, the nascent neutron star could undergo a secular bar-mode instability, leading to gravitational wave losses which would affect the neutron star spin-down. In this case, nearby gamma-ray bursts with isotropic energies of the order of 1050 ergs would produce a detectable gravitational wave signal emitted in association with an observed X-ray light-curve plateau, over relatively long timescales of minutes to about an hour. The peak amplitude of the gravitational wave signal would be delayed with respect to the gamma-ray burst trigger, offering gravitational wave interferometers such as the advanced LIGO and Virgo the challenging possibility of catching its signature on the fly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call