Abstract

Water hyacinth fibers (Eichhornia crassipes) were functionalized using radiation-induced graft polymerization of glycidyl methacrylate by γ-rays from 60Co source. The simultaneous grafting technique was employed wherein the water hyacinth fibers were irradiated in nitrogen atmosphere in the presence of glycidyl methacrylate dissolved in water/methanol solvent. The effects of different grafting parameters to the grafting yield were evaluated. The optimal values of solvent, absorbed dose, dose rate, and concentration of monomer were found to be 1:3 (volume/volume) water–methanol solvent, 10kGy, 8kGyh−1 dose rate and 5% volume/volume glycidyl methacrylate, respectively. Using the optimum conditions, degree of grafting of approximately 58% was achieved. The grafted water hyacinth fibers were characterized using Attenuated Total Reflectance-Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). The results of these tests confirmed the successful grafting of glycidyl methacrylate onto water hyacinth fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.