Abstract
The main raw material for the construction industry is concrete; whose fundamental components are the fine and coarse aggregates, water and cement. For the obtaining of these materials are necessary activities that generate environmental deterioration, since the aggregates are extracted from quarries or river banks and for each ton made of cement is emitted into the atmosphere a great lot of carbon dioxide. In this way, the present work is developed with the purpose of contributing to the research that can help the conservation of basic natural resources through the use of waste polymers such as waste tire rubber, in the production of concrete, hoping to reduce its harmful environmental impact. This work focuses on the one hand, in the study of the effects of the incorporation to the concrete, of different proportions of scratched rubber coming from waste tires, on its mechanical properties and on its capacity for microwaves absorption. On the other hand, it is also studied the effect of aging by applying different doses of gamma radiation on the before mentioned properties, seeking with this the possibility that it can be used in the construction industry either as structural material or as a coating. Replacements were made between 5% and 25% of rubber in order to do not significantly affecting the mechanical properties of the concrete. The results of the mechanical and microwave tests performed on the different samples with different gamma radiation doses were compared and it was found that open the possibility of research with great benefits such as the use of waste tires in the designing of concrete mixtures and the improvement of its properties. It is considered important to point out the economic benefit in the context of sustainable development, which involves solving the problem of environmental pollution caused by waste tires, to achieve the welfare of the population by improving their quality of life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nuclear Physics, Material Sciences, Radiation and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.