Abstract

Osteoarthritis (OA) is a prevalent joint disorder pathologically correlated to chondrocyte ferroptosis. Gamma-oryzanol (γ-Ory), as a first-line drug for autonomic disorders, aroused our interest because of its antioxidant, lipid-lowering, and hypoglycemic potential. The purpose of this study was to investigate the potential impact and mechanism of γ-Ory in treating OA. And the inhibition of γ-Ory in extracellular matrix molecule (ECM) degradation, ferroptosis, and Keap1–Nrf2 binding in IL-1β-exposed chondrocytes was detected via immunoblotting, immunofluorescence, and co-immunoprecipitation. Micro-CT, SO staining, and immunofluorescence have been conducted to assess the impact of γ-Ory treatment on ACLT-mediated OA in rats at both imaging and histological stages. We found that γ-Ory dose-dependently suppressed IL-1β-induced ECM deterioration and chondrocyte ferroptosis. Our animal experiments revealed that γ-Ory delayed ACLT-mediated OA development. Mechanistically, γ-Ory interfered with the binding of Keap1 to Nrf2 to promote the latter's nuclear import, thereby increasing the expression of detoxification enzymes. Summarily, our works support γ-Ory's potential as a candidate drug for the treatment of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call