Abstract

Overweight and obesity are the major risk factors of arterial hypertension. Recent studies indicate that adipose tissue hormone, leptin, is involved in the development of obesity-induced hypertension. Models of genetically determined obesity in rodents are commonly used to study the pathogenesis of obesity-associated hypertension. One of such models are agouti yellow obese (A y/a) mice which ubiquitously overexpress agouti protein—an endogenous antagonist of melanocortin receptors normally synthesized only in the hair follicle. In A y/a mice, agouti protein is synthesized also in the hypothalamus and blocks the anorectic effect of leptin mediated by alpha-melanocyte-stimulating hormone (α-MSH) which binds to melanocortin type 3 and 4 receptors (MC3R and MC4R). Consequently, A y/a mice are hyperphagic, obese, hyperinsulinemic and hyperleptinemic. Blood pressure is increased in A y/a mice due to increased serum leptin level. In contrast, blood pressure is reduced in MC4R-null mice despite obesity and hyperleptinemia, and is not increased by the administration of leptin in these animals, suggesting an essential role of the melanocortin pathway in the hypertensive effect of leptin. Herein, I propose the hypothesis which might explain why blood pressure is increased in A y/a mice but reduced in MC4R−/− mice, although hypothalamic melanocortin signaling is impaired in both models. According to this proposal, in MC4R−/− mice the natriuretic effect of γ-MSH mediated by intrarenal MC3R is preserved and counteracts prohypertensive mechanisms triggered by leptin. In contrast, in A y/a mice, ubiquitously expressed agouti protein blocks not only hypothalamic MC4R but also renal MC3R and thus impairs γ-MSH-induced natriuresis, leading to blood pressure elevation due to unopposed central and/or peripheral pressor effects of leptin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call