Abstract
Carotid and coronary vascular incidents are mostly caused by vulnerable plaques. Detection and characterization of vulnerable plaques are important for early disease diagnosis and treatment. For this purpose, the echomorphology and composition have been studied. Several distributions have been used to describe ultrasonic data depending on tissues, acquisition conditions, and equipment. Among them, the Rayleigh distribution is a one-parameter model used to describe the raw envelope RF ultrasound signal for its simplicity, whereas the Nakagami distribution (a generalization of the Rayleigh distribution) is the two-parameter model which is commonly accepted. However, it fails to describe B-mode images or Cartesian interpolated or subsampled RF images because linear filtering changes the statistics of the signal. In this work, a gamma mixture model (GMM) is proposed to describe the subsampled/interpolated RF images and it is shown that the parameters and coefficients of the mixture are useful descriptors of speckle pattern for different types of plaque tissues. This new model outperforms recently proposed probabilistic and textural methods with respect to plaque description and characterization of echogenic contents. Classification results provide an overall accuracy of 86.56% for four classes and 95.16% for three classes. These results evidence the classifier usefulness for plaque characterization. Additionally, the classifier provides probability maps according to each tissue type, which can be displayed for inspecting local tissue composition, or used for automatic filtering and segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.