Abstract
A Γ-convergence result involving the elastic bending energy of a narrow inextensible ribbon is established. As a consequence of the result, the energy is reduced to a one-dimensional integral, over the centerline of the ribbon, in which the aspect ratio of the ribbon appears as a small parameter. That integral is observed to increase monotonically with the aspect ratio. The Γ-limit of the family of energies is taken in a Sobolev space of centerlines with nonvanishing curvature. In that space, it is shown that the Γ-limit is a functional first proposed by Sadowsky in the context of narrow ribbons that form Möbius bands. The results obtained here do not apply to such ribbons, since the centerline of a Möbius band must have at least one inflection point. As a first step toward dealing with such inflection points, a result concerning the lower semicontinuity of the Sadowsky functional with inflection points comprising a set of measure zero within the domain of an arclength parameterization is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.