Abstract

This study aims to gain new insight into phenol degradation and mineralization in aqueous solution using ionizing radiation to control its radiolytic elimination under various experimental conditions and to present the different radical reactions involved in water radiolysis. The most obvious finding of this study is that the combination of a reagent, i.e., O3, H2O2, N2O, O2, or S2O82−, with γ-rays effectively enhances the radiolytic system for phenol degradation or mineralization. Radiolytic yield is higher with H2O2 than with S2O82−. For the γ-ray/free O2, γ-ray/H2O2, γ-ray/S2O82−, γ-ray/N2O, and γ-ray/N2 systems, the absorbed doses for 90% phenol elimination are 1.7, 0.85, 1.65, 1.2, and 6.4kGy, respectively; in contrast, phenol can be decomposed totally and directly via reaction with molecular ozone. The lowest dose constant for phenol removal is determined for γ-ray/HCO3−. 89% of mineralization is reached for an absorbed dose of 10kGy with a γ-ray/S2O82− combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.