Abstract

Simple SummaryStem cell-like glioma-propagating cells (GPCs) are crucial for initiation, growth, and treatment resistance of glioblastoma multiforme. Due to their strong immunosuppressive activities, they essentially limit immunotherapeutic approaches. This study offers a new model of radio-selected patient-derived GPCs mimicking a clinical treatment regime of tumor irradiation which is especially useful for immunotherapeutic studies. We provide evidence that clinically relevant, sub-lethal fractions of γ radiation select for a more radio-resistant GPC phenotype with lower immunogenic potential, potentially hampering the success of adjuvant T-cell-based immunotherapies. The immune evasion in GPCs was characterized by quantitative proteomics. It revealed a marked downregulation of the antigen processing machinery in lipid rafts of these cells, leading to reduced MHC surface expression and weaker cytotoxic T lymphocyte (CTL) recognition.Glioblastoma multiforme is the most common and devastating form of brain tumor for which only palliative radio- and chemotherapy exists. Although some clinical studies on vaccination approaches have shown promising efficacy due to their potential to generate long-term immune surveillance against cancer cells, the evasion mechanisms preventing therapy response are largely uncharacterized. Here, we studied the response of glioblastoma-propagating cells (GPCs) to clinically relevant doses of γ radiation. GPCs were treated with 2.5 Gy of γ radiation in seven consecutive cellular passages to select for GPCs with increased colony-forming properties and intrinsic or radiation-induced resistance (rsGPCs). Quantitative proteomic analysis of the cellular signaling platforms of the detergent-resistant membranes (lipid rafts) in GPCs vs. rsGPCs revealed a downregulation of the MHC class I antigen-processing and -presentation machinery. Importantly, the radio-selected GPCs showed reduced susceptibility towards cytotoxic CD8+ T-cell-mediated killing. While previous studies suggested that high-dose irradiation results in enhanced antigen presentation, we demonstrated that clinically relevant sub-lethal fractionated irradiation results in reduced expression of components of the MHC class I antigen-processing and -presentation pathway leading to immune escape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call