Abstract

Gamma radiation induces apoptosis in the proliferative zone (neuroblastic layer) of the developing rat retina. We asked whether sensitivity to apoptosis might be related to distinct phases of the cell cycle. Explants of newborn rat retina or newborn pups were gamma-irradiated and apoptosis was detected by chromatin condensation, DNA fragmentation in situ and DNA electrophoresis. After 6 hours, early appearing apoptotic bodies were located mainly towards the outer tier of the neuroblastic layer. In contrast, after 24 hours, late-appearing apoptotic cells were located towards the inner margin of the neuroblastic layer, a region associated with the S phase of the cell cycle. Labeling of a cohort of cells with the nucleotide analog bromo-deoxyuridine (BrdU) at the time of irradiation, showed that these cells die in the late wave of apoptosis. BrdU given 3 hours before fixation labeled a large number of late apoptotic cells, but no early apoptotic cells. After labeling of all cycling cells with BrdU, 40% of the early apoptotic profiles were unlabeled, and thus post-mitotic. The same schedules of cell death were identified after gamma irradiation in vivo. The results show that irradiation leads to two waves of apoptosis in distinct cell populations. An early wave comprises both post-mitotic cells and proliferating cells out of the S phase. The late wave comprises cells in S phase, which pass through this phase again to die. The antioxidant pyrrolidinedithiocarbamate prevented the early but not the late wave of apoptosis following irradiation, and blocked lipid peroxidation at 6 hours after the insult, suggesting that the two waves of apoptosis are indeed mediated by distinct mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.