Abstract

Macrophage activation in vivo has been associated with qualitative and quantitative alterations in the release and metabolism of arachidonic acid. In the present study, we examined the effect of in vitro macrophage activation with recombinant gamma-interferon (IFN-gamma) on arachidonic acid secretion induced by exposure to a variety of stimulating agents. Secretion stimulated by challenge with unopsonized zymosan, insoluble immune complexes, the calcium ionophore A23187, or combinations thereof was unaltered in IFN-gamma-treated macrophages. However, when phorbol diesters active as tumor promoters were employed as challenge agents, arachidonate secretion was enhanced as much as 10-fold over that seen in nonactivated controls. The enhanced secretory response to PMA was detectable as early as 1 hr after exposure to IFN-gamma, reached a maximum within 3 to 6 hr, and subsequently declined to control levels even in the continued presence of the agent. Treatment with IFN-gamma did not alter the pattern of individual metabolites produced by macrophages challenged with either zymosan or PMA. Finally, the sensitivity to phorbol diesters was also increased by treatment with IFN-gamma (ED50 reduced from 35 ng/ml to 4 ng/ml). Thus, IFN-gamma could prime macrophages for a substantially amplified response to phorbol esters. Because the cellular mediator of PMA action has been identified as a Ca++, phospholipid-dependent protein kinase, a role for this enzyme in macrophage functional development is indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.