Abstract
Purpose Patient-specific quality assurance (QA) by gamma (γ) analysis is an important component of high-precision radiotherapy. It is important to standardize institute-specific protocol. In this study, we describe our institutional experience of patient-specific QA for high-precision radiotherapy from a clinical perspective. Methods The planning data of 56 patients treated with intensity-modulated radiotherapy (IMRT)/volumetric modulated arc therapy (VMAT) were included. γ index analysis was done using Octavius 4D IMRT QA phantom(PTW, Freiburg, Germany) using 3 mm/3% criteria. Local, global, and volumetric gammas were calculated and compared. The relationship of γ index in the transverse, coronal, and sagittal direction and anatomical region of treatment was explored. Results Global three-dimensional (3D) γ indices in the coronal, sagittal, and transverse axes were 96.73 ± 2.35, 95.66 ± 3.01, and 93.36 ± 4.87 (p < 0.05). The average local two-dimensional (2D) γ index was 78.23 ± 5.44 and the global γ index was 92.41 ± 2.41 (p < 0.005). The average local 3D γ index was 84.99 ± 4.24 and the global 3D γ index was 95.25 ± 1.72 (p < 0.005, paired t-test). The average local volumetric γ index was 84.29 ± 4.73 and the global volumetric γ index was 95.96 ± 2.08 (p < 0.005). 3D global gamma index was significantly different in different anatomical regions (p < 0.05). Conclusion Our study shows that γ index analysis is a useful parameter for routine clinical IMRT QA. The choice of type of γ index depends on the context of use and degree of stringency in measurement. Average 2D and 3D global γ were different in anatomical regions. The average 3D γ index was significantly different in axes. No difference was observed with techniques of IMRT/VMAT. Localization of failed points in CT anatomy can be advantageous for clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.