Abstract

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority (>99.9%) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.