Abstract
In this work, we present an attention-based encoder-decoder model to approximately solve the team orienteering problem with multiple depots (TOPMD). The TOPMD instance is an NP-hard combinatorial optimization problem that involves multiple agents (or autonomous vehicles) and not purely Euclidean (straight line distance) graph edge weights. In addition, to avoid tedious computations on dataset creation, we provide an approach to generate synthetic data on the fly for effectively training the model. Furthermore, to evaluate our proposed model, we conduct two experimental studies on the multi-agent reconnaissance mission planning problem formulated as TOPMD. First, we characterize the model based on the training configurations to understand the scalability of the proposed approach to unseen configurations. Second, we evaluate the solution quality of the model against several baselines-heuristics, competing machine learning (ML), and exact approaches, on several reconnaissance scenarios. The experimental results indicate that training the model with a maximum number of agents, a moderate number of targets (or nodes to visit), and moderate travel length, performs well across a variety of conditions. Furthermore, the results also reveal that the proposed approach offers a more tractable and higher quality (or competitive) solution in comparison with existing attention-based models, stochastic heuristic approach, and standard mixed-integer programming solver under the given experimental conditions. Finally, the different experimental evaluations reveal that the proposed data generation approach for training the model is highly effective.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.