Abstract

Gamma components of the local field potential (LFP)are elevated during cognitive and perceptual processes. It has been suggested that gamma power indicates the strength of neuronal population synchrony, which influences the relaying of signals between cortical areas. However, the relationship between coordinated spiking activity and gamma remains unclear, and the influence on corticocortical signaling largely untested. We investigated these issues by recording from neuronal populations in areas V1 and V2 of anesthetized macaque monkeys. We found that visual stimuli that induce a strong, coherent gamma rhythm result in enhanced pairwise and higher-order V1 synchrony. This is associated with stronger coupling of V1-V2 spiking activity, in a retinotopically specific manner. Coupling is more strongly related to the gamma modulation of V1 firing than to the downstream V2 rhythm. Our results thus show that elevated gamma power is associated with stronger coordination of spiking activity both within and between cortical areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.