Abstract
The usage of composites as the shielding materials are highly recommended since they could be used in order to attenuate the undesired radiation with unique properties and advantages in the areas where the radiation is prevalent. In this context, not only are their radiation shielding properties important but also their flexibility, durability and low cost. Due to the mentioned superior characteristics, the polyester based composites are among the most preferred materials. With the aim of creating unique and novel radiation shielding materials, this study investigates gamma and neutron shielding capabilities of the polyester composites reinforced with Boron and Tin nanopowders at different proportions (0–50%, 10–40%, 20–30%, 30-20% and 40-10%, 50-0%). The gamma shielding abilities of the prepared polyester composite materials were evaluated using an HPGe detector system, WinXCOM computer program and different simulation tools (FLUKA and GEANT4) at the energies varying from 59.5 to 1332.5 keV. The experimental, theoretical and simulation results showed remarkable agreement between each other, and the addition of Sn enhances the gamma attenuation performance of the chosen polyester composite materials. In addition to gamma analysis results, neutron shielding properties of the proposed composites are further determined. On this purpose, the transmitted neutron numbers through the samples (as functions of neutron energy and the sample thickness) and effective neutron removal cross sections were evaluated. The neutron shielding performance of the samples showed that the prepared composites could be alternative materials to the existing neutron shields in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.