Abstract

Sex ratio theory predicts that malaria parasites should bias gametocyte production toward female cells in single-clone infections because they will experience complete inbreeding of parasite gametes within the vector. A higher proportion of male gametocytes is favoured under conditions that reduce success of male gametes at reaching females such as low gametocyte density or attack of the immune system later in the infection. Recent experimental studies reveal genetic variation for gametocyte sex ratio in single-clone infections. We examined these issues with a study of experimental single-clone infections for the lizard malaria parasite Plasmodium mexicanum in its natural host. Gametocyte sex ratios of replicate single-clone infections were determined over a period of 3-4 months. Sex ratios were generally female biased, but not as strongly as expected under simple sex ratio theory. Gametocyte density was not related to sex ratio, and male gametocytes did not become more common later in infections. The apparent surplus of male gametocytes could be explained if male fecundity is low in this parasite, or if rapid clotting of the lizard blood reduces male gamete mobility. There was also a significant clone effect on sex ratio, suggesting genetic variation for some life-history trait, possibly male fecundity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.