Abstract
Cognitive radio networks provide dynamic spectrum access techniques to support the increase in spectrum demand. In particular, the spectrum sharing among primary and secondary users can improve spectrum utilization in unused spectrum by primary users. In this paper, we propose a novel game theoretic channel allocation framework to maximize channel utilization in cognitive radio networks. We degisn the utility function based on the co-channel interference among primary and secondary users. In addition, we embed the property of the adjacent channel intererence to consider real wireless environment. The results show that the utility function converges quickly to Nash equilibrium and achieves channel gain by up to 25 dB compared to initial assignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.