Abstract

Objective Cortical priming is an emerging strategy to enhance motor recovery after stroke, however, limited information exists on the neuromodulatory effects of lower limb movement-based priming to facilitate corticomotor excitability after stroke. In this study, we investigated the feasibility and effectiveness of game-based ankle movement priming using the DIG-I-PRIME™ on corticomotor excitability and motor performance in chronic stroke survivors. Methods Nineteen stroke survivors participated in a 20-min session of game-based priming. A period of rest served as a control for the priming condition. Transcranial magnetic stimulation (TMS) was used to measure corticomotor excitability of the paretic and non-paretic tibialis anterior (TA) muscle representations. Motor performance was quantified by assessing the accuracy to track a sinusoidal target wave with paretic dorsiflexion and plantarflexion. Results Ipsilesional corticomotor excitability increased by 25% after game-based movement priming (p = 0.02) while changes were not observed after the control condition. No change in motor performance was noted. Conclusion Game-based ankle movement priming demonstrated a significant acute priming effect on the ipsilesional lower limb M1. These data provide preliminary evidence for the potential benefits of game-based priming to promote functional recovery after stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.