Abstract

Since the outbreak of the COVID-19 pandemic, many healthcare facilities have suffered from shortages in medical resources, particularly in Personal Protective Equipment (PPE). In this paper, we propose a game-theoretic approach to schedule PPE orders among healthcare facilities. In this PPE game, each independent healthcare facility optimises its own storage utilisation in order to keep its PPE cost at a minimum. Such a model can reduce peak demand considerably when applied to a variable PPE consumption profile. Experiments conducted for NHS England regions using actual data confirm that the challenge of securing PPE supply during disasters such as COVID-19 can be eased if proper stock management procedures are adopted. These procedures can include early stockpiling, increasing storage capacities and implementing measures that can prolong the time period between successive infection waves, such as social distancing measures. Simulation results suggest that the provision of PPE dedicated storage space can be a viable solution to avoid straining PPE supply chains in case a second wave of COVID-19 infections occurs.

Highlights

  • Novel infectious diseases pose a serious challenge to policy makers and healthcare systems

  • We developed a game-theoretic model for scheduling Protective Equipment (PPE) supply for healthcare facilities

  • Our model adopts a centralised-decentralised approach to the PPE supply chain, where a central entity controls the PPE pricing formula, yet is committed to fulfilling the orders independently placed by healthcare providers

Read more

Summary

Introduction

Novel infectious diseases pose a serious challenge to policy makers and healthcare systems. Emerging from Wuhan, China, the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wreaked havoc globally. This is due to its rapid rate of transmission, its virulence and the inability of most countries to adequately prepare for such a disease [1]. Identified in December 2019, the disease has a global distribution with over 30 million confirmed cases and almost one million confirmed deaths as of September 2020 according to the World Health Organisation (WHO) [2]. COVID-19 is primarily transmitted through respiratory droplets and the WHO has identified two principal routes through which these are carried between people. The first mode of transmission involves a person being in direct, close contact with

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.