Abstract
Game-theoretic models were investigated not from the point of view of the maxima of the players' utility functions, as is usually done, but by solving algebraic equations that characterize the Nash equilibrium. This characterization is obtained for models of binary collective behavior, in which players choose one of two possible strategies. Based on the results for the general model, game-theoretic models of conformal threshold Binary Collective Behavior (BCB) are studied, provided the collective is divided into L groups. The conditions for the existence of Nash equilibria is proved. For each Nash equilibrium, its structure is defined. The results obtained are illustrated by two examples of conformal threshold BCB when the group coincides with the whole team and when the latter is divided into two groups. It is shown that the Nash equilibria in the first and second examples are analogues of the equilibria in the dynamic models of M. Granovetter and T. Schelling, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.