Abstract

Game theory is a branch of mathematics aimed at the modeling and understanding of resource conflict problems. Essentially, the theory splits into two branches: noncooperative and cooperative game theory. The distinction between the two is whether or not the players in the game can make joint decisions regarding the choice of strategy. Noncooperative game theory is closely connected to minimax optimization and typically results in the study of various equilibria, most notably the Nash equilibrium. Cooperative game theory examines how strictly rational (selfish) actors can benefit from voluntary cooperation by reaching bargaining agreements. Another distinction is between static and dynamic game theory, where the latter can be viewed as a combination of game theory and optimal control. In general, the theory provides a structured approach to many important problems arising in signal processing and communications, notably resource allocation and robust transceiver optimization. Recent applications also occur in other emerging fields, such as cognitive radio, spectrum sharing, and in multihop-sensor and adhoc networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.