Abstract

This paper presents a multi-objective redundancy allocation problem (MORAP) for maximizing system reliability and simultaneously minimizing system cost with limitations on system entropy, which is essential for achieving system stability and sustainability. Entropy is an important part of this new model because it provides a measure of randomness, which should be limited to avoid risky solutions. Both component reliability estimates and component cost estimates are considered to formulate the model in more realistic sense. In real-life MORAP, the Pareto optimal set can be extremely large. A selection procedure based on the notion of game theory is then proposed to determine representative solutions for solving the problem. For MORAP, the game theoretical framework can select representative solutions effectively with higher system reliability, lower associated variance of the reliability estimate and higher system entropy. The validity and the performance of the proposed approach are tested through three numerical examples, and computational results are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.