Abstract

ABSTRACT Microgrids are the key for integrating renewable energy from different sources into smart grid, that is why power grid evolves into a combination of interconnected microgrids. In fact, future power grids are undergoing this groundbreaking change that will help meet the increasing demand of electric power and reduce carbon emission. In this sense we study in this paper, based on measured data, a real case of energy management in the area of Beja located in Tunisia. Indeed, we propose a model for the power exchange which proves the potential of applying game theory in the development of both real-time pricing and energy management mechanism for an open electricity market. We also introduce a hybrid genetic algorithm to compute the Nash Equilibrium. Results show that the proposed smart energy management can decrease the real cost of power up to 20%, to divide the energy transmission losses by a factor of two and to reduce the carbon emission in the area of Beja.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.