Abstract

We present an analysis of different classes of alternate games from different perspectives, including game theory, logic, bounded rationality and dynamic programming. In this paper we review some of these approaches providing a methodological framework which combines ideas from all of them, but emphasizing dynamic programming and game theory. In particular we study the relationship between games in discrete and continuous time and state space and how the latter can be understood as the limit of the former. We show how in some cases the Hamilton-Jacobi-Bellman equation for the discrete version of the game leads to a corresponding HJB partial differential equation for the continuous case and how this procedure allow us to obtain useful information about optimal strategies. This analysis yields another way to compute subgame perfect equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.