Abstract

AbstractWe introduce game-theoretic semantics for systems without the conveniences of either a De Morgan negation, or of distribution of conjunction over disjunction and conversely. Much of game playing rests on challenges issued by one player to the other to satisfy, or refute, a sentence, while forcing him/her to move to some other place in the game’s chessboard-like configuration. Correctness of the game-theoretic semantics is proven for both a training game, corresponding to Positive Lattice Logic and for more advanced games for the logics of lattices with weak negation and modal operators (Modal Lattice Logic).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.