Abstract
In this paper, a non-cooperative game theoretic power allocation (NGTPA) scheme is proposed for coexisting multistatic radar and wireless communication systems. Due to the fact that each radar in the system is selfish-interested to maximize its own utility, we utilize the non-cooperative game theory to tackle the power allocation problem. The main objective of the multistatic radar is to minimize the power consumption of each radar by optimizing the transmission power allocation, which are constrained by a predefined signal-to-interference-plus-noise ratio (SINR) requirement for target detection and a maximum acceptable interference power threshold for communication system. First, taking into consideration the target detection performance and received interference power at the communication receiver, a novel utility function is defined and adopted as the optimization criterion for the NGTPA strategy. Then, the existence and uniqueness of the Nash equilibrium (NE) point are analytically proved. Furthermore, an iterative power allocation algorithm is developed that converges quickly to the NE of the non-cooperative game model. Numerical simulations are provided to demonstrate the superior performance of the proposed NGTPA algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.