Abstract
Landslide susceptibility mapping is essential for reducing the risk of landslides and ensuring the safety of people and infrastructure in landslide-prone areas. However, little research has been done on the development of well-optimized Elman neural networks (ENN), deep neural networks (DNN), and artificial neural networks (ANN) for robust landslide susceptibility mapping (LSM). Additionally, there is a research gap regarding the use of Bayesian optimization and the derivation of SHapley Additive exPlanations (SHAP) values from optimized models. Therefore, this study aims to optimize DNN, ENN, and ANN models using Bayesian optimization for landslide susceptibility mapping and derive SHAP values from these optimized models. The LSM models have been validated using the receiver operating characteristics curve, confusion matrix, and other twelve error matrices. The study used six machine learning-based feature selection techniques to identify the most important variables for predicting landslide susceptibility. The decision tree, random forest, and bagging feature selection models showed that slope, elevation, DFR, annual rainfall, LD, DD, RD, and LULC are influential variables, while geology and soil texture have less influence. The DNN model outperformed the other two models, covering 7839.54 km2 under the very low landslide susceptibility zone and 3613.44 km2 under the very high landslide susceptibility zone. The DNN model is better suited for generating landslide susceptibility maps, as it can classify areas with higher accuracy. The model identified several key factors that contribute to the initiation of landslides, including high elevation, built-up and agricultural land use, less vegetation, aspect (north and northwest), soil depth less than 140 cm, high rainfall, high lineament density, and a low distance from roads. The study's findings can help stakeholders make informed decisions to reduce the risk of landslides and ensure the safety of people and infrastructure in landslide-prone areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.