Abstract
Models for microbial interactions attempt to understand and predict the steady state network of inter-species relationships in a community, e.g. competition for shared metabolites, and cooperation through cross-feeding. Flux balance analysis (FBA) is an approach that was introduced to model the interaction of a particular microbial species with its environment. This approach has been extended to analyzing interactions in a community of microbes; however, these approaches have two important drawbacks: first, one has to numerically solve a differential equationto identify the steady state, and second, there are no methods available to analyze the stability of the steady state. We propose a game theory based community FBA model wherein species compete to maximize their individual growth rate, and the state of the community is given by the resulting Nash equilibrium. We develop a computationally efficient method for directly computing the steady state biomasses and fluxes without solving a differential equation. We also develop a method to determine the stability of a steady state to perturbations in the biomasses and to invasion by new species. We report the results of applying our proposed framework to a small community of four E. coli mutants that compete for externally supplied glucose, as well as cooperate since the mutants are auxotrophic for metabolites exported by other mutants, and a more realistic model for a gut microbiome consisting of nine species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.