Abstract

A game-theoretic analysis is applied to the evaluation of capacity and stability of a wireless ad hoc network in which each source node independently chooses a route to the destination node so as to enhance throughput. First, the throughput of individual multihop transmission with rate adaptation is evaluated. Observations from this evaluation indicate that the optimal number of hops in terms of the achievable end-to-end throughput depends on the received signal-to-noise ratio. Next, the decentralized adaptive route selection problem in which each source node competes for resources over arbitrary topologies is defined as a game. Numerical results reveal that in some cases this game has no Nash equilibria; i.e., each rational source node cannot determine a unique route. The occurrence of such cases depends on both the transmit power and spatial arrangement of the nodes. Then, the obtained network throughput under the equilibrium conditions is compared to the capacity under centralized scheduling. Numerical results reveal that when the transmit power is low, decentralized adaptive route selection may attain throughput near the capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.