Abstract
Consider a distribution system with one supplier and two retailers. When a stockout occurs at one retailer customers may go to the other retailer. We study a single period model in which the supplier may have infinite or finite capacity. In the latter case, if the total quantity ordered (claimed) by the retailers exceeds the supplier’s capacity, an allocation policy is involved to assign the limited capacity to the retailers. We analyze the inventory control decisions for the retailers using a game theoretical approach. The necessary and sufficient conditions are derived for the existence of a unique Nash equilibrium. A computational procedure is also proposed to calculate the Nash equilibrium. In case the Nash equilibrium does not exist, we use the concept of Stackelberg game to develop optimal strategies for both the leader and the follower.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.