Abstract

It is often of interest to identify a given number of points in projective space such that the minimum distance between any two points is as large as possible. Such configurations yield representations of data that are optimally robust to noise and erasures. The minimum distance of an optimal configuration not only depends on the number of points and the dimension of the projective space, but also on whether the space is real or complex. For decades, Neil Sloane’s online Table of Grassmannian Packings has been the go-to resource for putatively or provably optimal packings of points in real projective spaces. Using a variety of numerical algorithms, we have created a similar table for complex projective spaces. This paper surveys the relevant literature, explains some of the methods used to generate the table, presents some new putatively optimal packings, and invites the reader to competitively contribute improvements to this table.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.