Abstract

The game chromatic number $\chi _{g}$ is considered for the Cartesian product $G\,\square \,H$ of two graphs $G$ and $H$. Exact values of $\chi _{g}(K_2\square H)$ are determined when $H$ is a path, a cycle, or a complete graph. By using a newly introduced "game of combinations" we show that the game chromatic number is not bounded in the class of Cartesian products of two complete bipartite graphs. This result implies that the game chromatic number $\chi_{g}(G\square H)$ is not bounded from above by a function of game chromatic numbers of graphs $G$ and $H$. An analogous result is derived for the game coloring number of the Cartesian product of graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.